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A formulation which uses Lagrange multipliers to "smooth out" discontinuities in the stress field approximation at the joints of 
the boundary elements, and which is in fact a hybrid formulation of the finite-element method [1, 2], is considered. The 
improvement to the a pc~teriori estimate approximation is analysed. 

It is well known [1, 2] that inter-element inconsistency in the displacement field and violation of the 
equilibrium condition for nodal forces statically equivalent to stresses at theboundary elements, are 
both sources of errors in finite-element approximations. This is also true for boundary-element 
approximations (BF_As) of the variational boundary element method (VBEM) [3-7]. In a consistent 
BEA for the displacements and associated stress approximation (the latter being a derivative of the 
displacement approximation) there may be discontinuities in the stress field at the joins between the 
boundary elements. 

For example, in the linear displacement approximations at points of a curvih'near boundary the stress 
field, being constant in the limit at each dement,  also has a jump at the boundaries of the elements 
(proportional to the value of the direction cosines of the normals at the points of the linear elements) 
when the VBEM algorithm is implemented [6]; we are in effect describing the approximation of a 
continuous function (the given stress field) by a piecewise-constant function (the required stress field). 
It is obvious that the desired accuracy of such an approximation may be achieved by using a sufficiently 
fine decomposition :for the discrete boundary, which leads to a higher-order system of solving equations. 

This is the basis of the duality algorithm presented below for improving the accuracy of a constrained 
BEA for a stress field, which, as a result of the implementation, satisfies an integral condition (as a 
constraint equation using Lagrange multipliers) for the equilibrium of normal stresses at the joints of 
elements and which results in an improvement in the accuracy of the approximation. This is established 
below (Sections 3 and 4). 

1. Let  SA = UASn (n = 1 , . . . ,  N) be a discrete boundary (with Ash a boundary element (BE)) 
approximating the boundary S of a domain G C Em (m = 2, 3) which may have points at infinity; it is 
assumed that Sa is a "Lipschitz continuous" boundary [1]. Following the VBEM [6] we consider an 
approximating variational problem for the boundary functional (BF) 

rain Fa(u), F• = f u( 'A)(u)dsA-2 ! ug~'A)dsA (1.1) 
"EDA SA SA 

where g(Va), t(vA) are the specified and required stress vectors at the points of Sa along the direction of 
the external normal pA; the set Da of kinematically admissible vector displacement functions u(x), x 
Ga is approximated [6] by discrete boundary potentials satisfying the Lam6 equation (and a regularity 
condition at infinity if the domain Ga has a point at infinity). 

Problem (1.1) is solvable because it is equivalent to the second problem of the theory of elasticity in 
the domain Ga with boundary Sa which is solvable [8] up to an arbitrary rigid displacement. 

With the well-known uniqueness conditions for the solution [8] of 

I udGA = 0, I rot udGA = 0 (1.2) 
eA aA 

which exclude such a displacement, it follows [6] that 
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min FA(u ) = F~, (Uo) = d 0 = - ~ Uot(Va)(uo)dSA 
uGDa sA 

(1.3) 

and the minimizing element u0 satisfies the variational equation 

f Vt(vA)(u0)dSA-- ~ vg(Va)dSa =0  V v ~ D  A (1.4) 
s~ sA 

Note that the constructions given below are assumed to be mathematically well-posed in the sense 
that the trace (in terms of the space W ~ l t 2 ( S ~  theorem conditions are satisfied for functions in the 
Sobolev class W12(GA) which contains the solutions of variational problems equivalent to second-order 
elliptic boundary-value problems. 

2. Let Snn' be the common boundary of adjoining BEs As n and let A~ n, (n, n '  = 1 . . . .  , N )  and  tn, tn, 
be the values of the vector t (vA) (the index v~ being omitted from now on) at points snn' matched to the 
BEA stress field at the points ASh, A~n'. 

We define a set AA of Lagrange multipliers k in the form of sufficiently smooth vector functions, 
defined at points of the Sa, and such that the scalar function 

N 

/ ( u , k ) =  Y. J k [ t . (u ) - t . , (u ) ]ds~ .  
n=l  ,v~, 

has the following property 

0, tn(U) = tn,(u)  Vn 
suAp~f= +~, tn (u )* t . , (u )  Vn (2.1) 

This property is established by direct verification (see for example [9]), and the functionfis used to 
construct the Lagrangian 

LA(u, k) = F~(U) - 2J(u, k) (2.2) 

The interpretation of the Lagrange multipliers follows from the physical significance of the terms 
occurring in the functional LA: each term represents the work performed by the unknown and specified 
surface stresses during the displacements, and, in particular, the second term is the work done by the 
stress jumps at the joins of adjacent BEs. 

The equivalence of the problem 

mm..Eo~ maxxe^~ LA(u,X) 

(with the condition that the minimum with respect to u and the maximum with respect to k are reached) 
to the original problem (1.1) is established as in [7]: if tn(U) = tn,(u), which indicates the continuity 
of the stress fields at the points of SA, then max~f = 0 (see (2.1)) and minumax~LA = minoVA(u) = do 
(see (1.3)). 

The dual problem 

maxx~̂ ~ minuD A L~(u, k) 

has meaning if 

rain max La = max min L A = d o 
u ~ D  A k e A ~  ]keA a U~DA 

(2.3) 

We will prove the right-hand equality in (2.3). Let k be fixed; then the solution ux = u(k) of the 
problem min~LA(u, k) is Obtained from the equation (V v ~ DA) 

graduLA = graduF a (u x) - 2f(v,  k) -- 0 (2.4) 

When v = u~, we obtain, using (2.2), the value of the functional La at the solution u~ (with the 
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multiplier k fixed) 

rain u L A = L a ( u } , , ~ ) = - f ( u u , k ) -  ~ uug('A)dS a 
s~ 

The dual problem then reduces to the problem 

(2.5) 

max LA (U x , k) = -- mint- LA (U x, k)] (2.6) 
A 

The second condition is then used to determine the saddle point of the Lagrangian La (the first 
condition being condition (2.4)) 

graduLA(u, X) = 2f(u,p,) = 0 Vp ~ A a (2.7) 

When St = k and u = ux it follows from this thatf(ux, k) = 0 and from (2.5) we obtain 

-LA(u~,. ~,) = I u~,g°'A)ds,~ V~. ¢ ^A 
sA 

Then, when k =: ~o and ux0 = uo, it follows from (2.6) and (1.4) that when v = u0 

maxmin LA ffi -- I uog{'a)dsa ffi - J uot('a)(uo)dsa ffi do 
x • sA sa 

(see (1.3)), which proves the duality relation (2.3), and this implies the existence of the saddle point 
(u0, ~o) of the Lagrangian (2.2) and a two-sided estimate of the value of the functional at the exact 
solution 

L~(uo,~)~ LA(Uo,Ko)= FA(U0)~ LA(U,X o) V u c D  A, k ¢ A  A (2.8) 

This condition is satisfied by the solution of the system of variational equations (2.4) and (2.7). 
Before proceeding to the approximation and the discrete problem we note that the above establish- 

ment of the equiva~lence of the original problem and the problem transformed by the Lagrange multiplier 
method leads to the same solution in both the exact case and the approximate case with any level of 
accuracy. Below we show that the duality algorithm based on the equivalence theorem enables us to 
refine the approx~aaate solution. 

3. We will now proceed to the discrete problem for Eqs (2.4) and (2.7), which is essentially the solution 
of the dual problem of searching for the saddle point La(u, k). We consider the ease of the numerically 
easily implemented linear (bilinear when m = 3) isoperimetrie BEA for the boundary Sa and approxi- 
mate solution (UN, kN). Let 

Ya = YnEkYnkYk, k = 1 ..... K; n = 1 ..... N 

be the parametric equation for Sa, where Ynk is the m-dimensional vector of global coordinates for the 
nodes of the decomposition of Sa 

ut¢ =~n~U.~¥k, kt¢ = ~-.I;kA~¥k (3.1) 

are the global interpolation functions for the displacement field continuous at the points of Sa, where 
U,a,, Ank are m-dimensional vectors of the nodal values of the approximate solution, Yk(rl) are the linear 
Coilinear when m •: 3) basis functions of the BEM [10] andyn(rl) connect the global and local coordinates 
at the points of As n ffi 1 ..... N. 

The discrete an~dogues of Eqs (2.4) and (2.7) at the approximations (3.1) correspond to the equations 

gradu,,t LA (UN,KN)=O, gradAntLA (uS,XN)=O 

and when the matrices are constructed the systems of discrete equations over the elements of A~ n are 
written in the forva 
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~, {~ .Un, tc~ ' t~ ,  "" - ~ ' }  (3.2) 
- Qn'tgkt -Ank ~ ( ~ - c k t )  = 0  n.n'EIN} {n'} {n'} In'} 

n.n.,{N}f{n. E (UnlCkl-n _Un.lCkl-n" )} =O (3.3) 
Here {n'} is the set of adjacent BEs sharing the node k ~ As,,; the contributions of the adjacent 

BEs depending on the required and specified stress field with an interpolant represented in the form 
~v~) = ZQ, a Yk (k = 1 , . . . ,  K) are given by 

/ !  e t l  t 

Ckl = ~ ¥~Tn'¥tlJ. Idsn'O]), g~t = ~ ~¥tlJn'ldsn'(~) 

where Tn is the scalar operator corresponding [6] to the approximation t(v~)(u~), and IJ, I is the 
Jacobian of the transformationy.(rl); ~ are the values of the contributions o f c ~  for fixed coordinates 
11 at the boundaries As,,. For a bilinear BEA: s,,,,, is a line, the integral over s,~, corresponds to an 
integral over rli, i = 1, 2 (with fixed rlj, J = 1, 2), and T,,, is the trace of  the operator T,,,on s,,,,,. For 
a linear BEA: s~, is the node point k (the common point of adjacent BEs) and ~ = ykT,,'¥l where 
y k =  1 andrl = _1.  

For a linear BEA for nodes k, l = 1, 2 of the nth BE the terms in braces in (3.2) are written in the 
form ({n'} = {n - 1, n + 1}) 

- ' + '  1 "b U(n÷I)ICl2 N£(n+l)l/~12 ] -  

-[A., (F,~- ?~'(' ) + An2 (~-~, - ~'~2+' )]} 

The sum Zn' in (3.3) is correspondingly written in the form 

{(U,,~:2 - U~,_,)2~-' ) + (O,2~, - U~,÷,),~ +' )} 

The matching conditions Unl = U(~-I)2, Un2 = U(n+1)1 for the nodal values of the displacements are 
then used, followed by summation over n in (3.2) and (3.3). The formation of the system of boundary 
equations for the bilinear BEA is more complicated. 

The algorithm for implementing the solution of system (3.2), (3.3) is as follows: the nodal values U,,.t 
are determined from (3.2) in terms of Q~'t, Ank (Qn7 are the specified nodal values) and then the values 
of A~ are determined from (3.3) with the condition U,,l = U,:I Vn ~ {N} (the continuity condition for 
the displacement field at the points of Sa). 

We shall clarify in what sense the approximation to the solution obtained by implementing the above 
duality algorithm is an improvement. For every fixed ~ the solution amounts to a sum ujvg- + u~-x, which 
follows from Eq. (2.4) or from its discrete analogue (3.2). Here U~vg is the "Ritz" solution of problem 
(1.1) and uAr~ is the solution of the functional problem (see (2.2)) 

L~(u)= ~ ut(v~)(u)dsA-2f(u,~,) 
SA 

on the set D•, where k can be considered as a displacement field specified at the points S~. It is clear 
that u ~  ~ 0 when N ~ ** because when the decomposition of Sa is refined the stress jumps on As~ at 
the joins of the elements are "smoothed", so that the jump function f(ulv, k) ~ 0 (see below) and in 
the limit we obtain u ~  = 0. 

This follows from the condition grad.  L~(uNx) = 0 (whenf(uN, k) --> 0), which is written in the form 
fsAvt(VD(uN~.)dsa = 0 V v ~ D a. 

From this we obtain t("a)(u~rx) = 0 and consequently UAO, IsA = C', where c is a constant. Let 
fiNz(x) = c be the solution when x ~ Ga. (Here fiAr~ E DA (see (1.1)) because the Lam~ equation is 
satisfied.) Then the constant satisfying (1.2) is identically equal to zero. (Conditions (1.2) should be 
satisfied by the sum u~ + uNz, which also means that it is satisfied by each term separately.) 

Accordingly, when ~ ---> ~ we have Ujvg ---> u0 [5, 6] where u0 is the exact solution (see (1.3)); 
finally, when N ---> ** we obtain (U~vg + u~) ---> u0. Thus u~ can be considered to be an improvement 
to the solution u,vg associated with the "smoothing" of the stress field discontinuities at tl~e joints of 
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the BEs. The fact that the stated correction improves the approximation is confirmed below by the better 
a posteriori error estimate compared with the estimate obtained [6] in the formulation of the VBEM 
which takes no aco~unt of the stress jump at the BE joins. We recall that the estimate is improved if 
for a fixed deeoml~3sition (i.e. for fixed N) the right-hand side of the estimate decreases. 

4. The norm in the space W21/2(SA) (or Le(SA)) of the difference u0 - UN is estimated [6] in terms of 
the difference in the: values of the functionals in the direct and dual problems in the approximate solutions 

0 < 81N ---- 2[FA(uN)- OA(t('A)(UN ))] = ~ uNtC'A)(uN)ds~ - ~ uNg{'a)ds~ 
s~ s~ 

(4.1) 

A similarly stated norm of the difference can be estimated [7] on the basis of estimate (2.8) in terms 
of the difference of functionals 

0 < S2~, ~ [LA (uH, ~ ' o ) -  LA (Uo, ~'M)] = 

= - ~ uNt('A)(Ulv)dsa + ~ uNg('A)dsA +f(uN,k #) (4.2) 
sA s~ 

Here the value La(uN, ko) and La(uo, kN) are determined from (2.4) and (2.2) when u = uN, k = ko 
and when u = u0, k = kN. 

Respectively adding and subtracting the left- and right-hand sides of (4.2) and (4.3), we obtain 

5~  + ~lN =f(u~, k~) > 0 (4.3) 

82N--SiN = f(UN'k~V)-- 21JkSA uNtCVD(uN)dsa - S~I umgf'A)dsa] (4.4) 

iwhere (4.3) has the physical meaning of the work done by the stress discontinuities over the approxi- 
mating displacements). 
The second term in (4.4) is graduFA(UN), and from (2.4) when uz = uN and v = u# we have 

grad~FA(uN) = 2f(uN, XN) 

Then from (4.4) we obtain by virtue of (4.3) 

- 8IN --- -~UN, XN) < 0 

This leads to an intprovement in the a posteriori estimate for the approximations {uN} 

[La (aN, X0)- La (u0, kN)] < ~ [Fa (u N) - O a  (tt'A)(UN))] 

Because of the proven convergence [5] UN --> u0 when N --> oo, it follows simultaneously from (4.1) 
and (4.2) that the estimates under consideration have an asymptotic nature, i.e. 6tN, ~ -~ 0 when 
N --> oo: the fight-hand side of Eq. (4.1) tends to zero by virtue of (1.4) when N ~ 0.; the fight-hand 
side of Eq. (4.2) tends to zero by virtue of (1.4) and because f(uN, kN) --> 0 when N --> oo (see above). 
The convergence/(uN, kN) --> 0 when N --> oo can also be established analytically: using the technique 
of trace theorem estimates and the methods of [7, 11] it can be shown that f(UN, kN) --> f(u0, k0) when 
N--~ oo. 

Thus the above ~dgofithm enables us to reduce the effect on the accuracy of the BEM approximations 
of inconsistencies in the stress field generated by the coupled approximation of the stress and displace- 
ment fields. 

An alternative formulation of the VBEM [7] using unconstrained approximations of the displace- 
ment and stress fields enables one to implement a consistent approximation of the stress field (continuous 
at the nodal points). According to the accuracy estimate of these approximations the estimates considered 
above are identical [7]. We also note that the a posteriofi estimates discussed here are obtained on the 
basis of duality relations, similar to the estimates which are obtained using opposed variational methods 
(relative to energy methods) of the Trefftz type [8, 12]. 
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